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Abstract: Climate risks pose significant challenges and threats to complex energy market system. This paper 

illuminates the interactions between clean and dirty energy markets and further investigates their asymmetric 

responses to climate risks. The influence of climate risks extends beyond extreme values and has a substantial impact 

on the overall distribution of the connectedness between clean and dirty energy markets. As the physical risk 

intensifies, the connectedness within both clean and dirty energy markets increases. The abnormal transition risk 

will render energy market fluctuations more uncertain and accentuate the distinction between clean and dirty energy 

markets.  

Keywords: clean energy; dirty energy; connectedness; climate risks 

JEL: P45, Q43, Q54 

1. Introduction 

The burning of fossil fuels has caused global warming and environmental damage. To prevent the severe 

consequences of climate change, the world needs to shift to cleaner and renewable energy sources, the 

connectedness of which is complex. An increasing amount of research has been dedicated to examining the 

spillovers within clean and dirty energy markets (Farid et al., 2023; Umar et al., 2022b; Corbet et al., 2020; Foglia 

and Angelini, 2020). Majority of studies follows the connectedness approaches and multivariate generalised 

autoregressive conditional heteroskedasticity (GARCH) models, but few have delved deeper into the influence 

factors. The connectedness of clean and dirty energy markets is shaped by a multitude of external factors, each of 

which influence aspects such as availability, cost, environmental impact and societal acceptance (Chen et al., 2021; 

Khalfaoui et al., 2022; Ding et al., 2022). Climate risks are increasingly becoming a significant factor affecting the 

structure and connectedness of energy financial markets (Cifuentes-Faura et al., 2024; Lorente et al., 2023). 

However, the asymmetric impact of climate risks on spillover among energy markets has rarely been discussed in 
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previous literature. 

This paper aims to fill this research gap by examining the interactions between clean and dirty energy markets 

and closely observe how this relationship shifts with climate risks. The main contributions of this paper are threefold. 

First, we propose a new framework to uncover the asymmetric impact of climate risks on energy markets, where 

the internal and external spillovers between clean and dirty energy markets are distinguished. Second, climate 

physical risk (CPR) and transition risk (CTR) are considered. The relationship between climate change and energy 

system attracts lot of attention. Extreme weather events increasing concerns about climate change can be illustrated 

as physical risk (Bergquist et al., 2019; Gong and Liao, 2024). However, previous study has generally focused on 

the public attention to climate change, which indirectly relates to the financial markets (Aliano et al., 2023; Ding et 

al., 2022). Therefore, professional climate physical attention is innovatively constructed. Third, we give special 

importance to the different situations of climate risks and market conditions. Quantile-on-quantile regression (QQR) 

is employed to investigate the asymmetric effects of climate risks on connectedness between clean and dirty energy 

markets. 

The remainder of the paper is laid out as follows. The next section is an overview of the methodology and data. 

The empirical results are described in Section 3. Our conclusions and police implications are presented in Section 

4. 

2. Methodology and Data 

2.1 Methodology 

2.1.1 TVP-VAR-DY Connectedness Decomposition Approach 

A time-varying parameter vector autoregression (TVP-VAR) that extended the Diebold and Yilmaz (2012) 

model (DY) is used (Antonakakis et al., 2020). Then, spillovers within and between markets is conducted to analyse 

the contributions of internal and external spillovers (Gabauer and Gupta, 2018). This TVP-VAR-DY connectedness 

decomposition approach is exceptionally well-suited for capturing the evolving dynamics and connectedness within 

energy markets in two groups: clean and dirty energy markets. 

𝑦
𝑖,𝑡

 is defined as the daily return of market i, considering the total vector for k markets 𝑦𝑡 = (𝑦1,𝑡 , . . . , 𝑦𝑘,𝑡)′; 

hence, the TVP-VAR(p) model with 𝑦𝑡 series satisfied is constructed: 
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where Ω𝑡−1 represents all known information up to period t-1. The model is then transformed into the VMA model: 
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with 𝐿 = [𝐼𝑁, … , 0𝑝]′  and 𝑊 = [𝛽𝑡; 𝐼𝑁(𝑝−1), 0𝑁(𝑝−1)×𝑁] . The differences between a J-step ahead forecast once 

with variable i shocked and once without shocking variable i: 

𝐺𝑙𝑅𝐹𝑡(𝐽, 𝛿𝑗,𝑡 , 𝐹𝑡−1) = 𝐸(𝑌𝑡+𝐽|𝜖𝑗,𝑡 = 𝛿𝑗,𝑡 , 𝐹𝑡−1) − 𝐸(𝑌𝑡+𝐽|𝐹𝑡−1)     (5) 
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where 𝜓𝑗,𝑡
𝑔

(𝐽) denotes the GIRFs of variable j and J represents the forecast horizon, 𝛿𝑗,𝑡 is the selection vector 

with one on the jth position and zero otherwise, and 𝐹𝑡−1 is the information set until t−1. Then, the GFEVD is 

calculated as follows: 

𝜙̃𝑖𝑗,𝑡
𝑔 (𝐽) =

∑ Ψ𝑖𝑗,𝑡
2,𝑔𝐽−1

𝑡=1

∑ ∑ Ψ𝑖𝑗,𝑡
2,𝑔𝐽−1

𝑡=1
𝑘
𝑗−1

          (8) 

with ∑ 𝜙̃𝑖𝑗,𝑡(𝐽) = 1𝑘
𝑗=1  and ∑ 𝜙̃𝑖𝑗,𝑡

𝑔 (𝐽)𝑘
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The total connectedness index (TCI) illustrates the overall risk spillover within the network of risk spillovers 

constructed by all markets: 
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Next, total directional connectedness to others (TO), total directional connectedness from others (FROM), net 

total directional connectedness (NET), and net pairwise directional connectedness (NPDC) are defined as follows: 
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To discern the degree of spillover within clean and dirty energy markets, as well as to ascertain the extent of 

spillover from one to the other, calculations of both internal and external spillovers are undertaken. 𝐶𝑖𝑗,𝑡 represents 

the aggregated impact group 𝑗 has on group 𝑖, where 𝑛 and 𝑘 represent two non-overlapping index sets. In this 

paper, 𝑖  and 𝑗  denote clean and dirty energy groups, while 𝑛  and 𝑘  denote the number of variables in each 

market group. 
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2.1.2 Quantile-on-Quantile Regression 

QQR extends the conventional quantile regression model by integrating non-parametric techniques (Sim and 

Zhou, 2015; Zhou et al., 2023). A nuanced understanding of how extreme values and tail dependencies of climate 

risks influence the market interactions is provided by QQR. A model for the θ-quantile of spillovers as a function 

of climate risks (CR) is postulated as follows: 

𝑆𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟𝑠𝑡 = 𝛽𝜃𝐶𝑅𝑡 + 𝛼𝜃𝑆𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟𝑠𝑡−1 + 𝑣𝑡
𝜃      (18) 

where 𝑣𝑡
𝜃 denotes an error term that has a zero θ-quantile. Then a first-order Taylor expansion can be employed to 

provide an approximation of 𝛽𝜃𝐶𝑅𝑡: 

𝛽𝜃𝐶𝑅𝑡 ≈ 𝛽𝜃𝐶𝑅𝜏 + 𝛽𝜃′
𝐶𝑅𝜏(𝐶𝑅𝑡 − 𝐶𝑅𝜏)       (19) 

Define 𝛽𝜃𝐶𝑅𝜏 and 𝛽𝜃′
𝐶𝑅𝜏 as 𝛽0(𝜃, 𝜏) and 𝛽1(𝜃, 𝜏):  

𝛽𝜃𝐶𝑅𝑡 ≈ 𝛽0(𝜃, 𝜏) + 𝛽1(𝜃, 𝜏)(𝐶𝑅𝑡 − 𝐶𝑅𝜏)      (20) 

𝑆𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟𝑠𝑡 = 𝛽0(𝜃, 𝜏) + 𝛽1(𝜃, 𝜏)(𝐶𝑅𝑡 − 𝐶𝑅𝜏) + 𝛼(𝜃)𝑆𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟𝑠𝑡−1 + 𝑣𝑡
𝜃  (21) 

where 𝛽0(𝜃, 𝜏)  and 𝛽1(𝜃, 𝜏)  are the coefficients to be estimated. 𝛽0  and 𝛽1  are associated with θ and τ, 

capturing the impact of τ quantiles of CR on θ quantiles of the connectedness index. 

2.2 Data 

Three representative markets from clean and dirty energy markets are selected respectively, and a description 

of the variables collected from investing.com from January 4, 2012, to November 29, 2023, is show in Table 1. The 

return of each market  𝑖  for time 𝑡  is defined as 𝑟𝑖(𝑡) =  𝑙𝑛𝑃𝑖(𝑡) − 𝑙𝑛𝑃𝑖(𝑡 − 1) , where 𝑃𝑖(𝑡)  is the price of 

market 𝑖.  

Table 1 Description of variables 

Classification Variable Description Symbol 

Clean energy markets Biomass market NASDAQ OMX Bio/Clean BIO 

Solar market NASDAQ OMX Solar SOLAR 

Wind market NASDAQ OMX Wind WIND 

Geothermal market NASDAQ OMX Geothermal GEO 

Dirty energy markets Crude oil market Bloomberg WTI Crude Oil subindex OIL 



Natural gas market Bloomberg Natural Gas Subindex NGS 

Gas oil market London Gas Oil GOL 

Climate risks Financial attention to climate change Google search index CPR 

Climate Policy Uncertainty Ma et al. (2024) CTR 

Figure 1 shows the descriptive statistics of the market variables. The average returns of BIO, OIL, NGS and 

GOL are negative, while those of other variables are positive. In terms of climate risks, professional attention to 

climate physical risk (CPR) is calculated by setting the Google Search Volume Index (GSVI) keywords ‘climate 

change’ and ‘global warming’ under the finance category following the principles from previous studies (Swamy et 

al., 2019; Zhang et al., 2021). The text-based climate policy uncertainty serves as a proxy for the climate transition 

risk (CTR) by quantifying the uncertainty associated with climate policy (Gavriilidis, 2021; Ma et al., 2024). Figure  

illustrates the trend of climate risks, demonstrating a fluctuating increase in global climate risks over the past decade. 

Table 2 Summary of descriptive statistics. 

 BIO SOLAR WIND GEO OIL NGS GOL 

Min. -0.181958 -0.193326 -0.132826 -0.133907 -0.340820 -0.191984 -0.408425 

Median 0.000365 0.000863 0.000463 0.000721 0.001026 -0.000809 0.000000 

Mean -0.000016 0.000681 0.000420 0.000117 -0.000372 -0.001077 -0.000050 

Max. 0.133931 0.120513 0.091540 0.182544 0.220483 0.166447 0.139988 

Skewness -0.829474 -0.424213 -0.340559 0.383537 -1.330730 -0.170675 -1.872894 

Kurtosis 10.598635 5.910636 4.597765 12.274502 24.730939 3.247940 36.458806 

Standard 

Deviation 
0.019031 0.020730 0.017220 0.017041 0.025750 0.030356 0.023382 

JB test 14342.653*** 4445.008*** 2693.704*** 18849.595*** 77092.217*** 1330.383*** 167367.588*** 

ADF test -13.286*** -13.097*** -13.627*** -13.578*** -13.544*** -13.463*** -13.877*** 

LM(10) 

test 
1002.394*** 730.026*** 125.386*** 222.053*** 526.789*** 299.152*** 166.179*** 

Notes: *, ** and *** represent significance at the confidence levels of 10%, 5% and 1%, respectively. 

 

Figure 1 CPR and CTR trends averaged monthly. 



3. Empirical Results 

3.1 Connectedness Analyses 

Table 3 reveals a total connectedness of 40.97%, an internal total connectedness of 25.28%, and an external 

total connectedness of 15.69%, indicating that most risk comes from the volatility spillover effects within the 

clean/dirty energy markets. Within the clean energy market, SOLAR has the strongest spillover effect, while OIL is 

dominant in dirty energy markets.  

Table 3 Connectedness measures among clean and dirty energy markets. 

 
BIO SOLAR WIND GEO OIL NGS GOL 

Internal 

FROM 

External 

FROM 

Overall 

FROM 

BIO 55.56 11.48 7.28 7.26 9.14 2.92 6.36 26.02 18.43 44.44 

SOLAR 12.14 55.28 10.77 8.45 6.17 2.70 4.49 31.37 13.35 44.72 

WIND 8.60 12.87 59.37 7.41 4.84 2.47 4.45 28.88 11.75 40.63 

GEO 8.76 9.46 6.88 62.69 5.20 2.77 4.24 25.10 12.22 37.31 

OIL 8.58 5.53 3.66 4.03 51.78 2.49 23.94 26.42 21.80 48.22 

NGS 3.82 3.76 3.59 3.04 5.14 76.00 4.66 9.80 14.21 24.00 

GOL 6.49 4.64 3.60 3.32 26.58 2.79 52.57 29.38 18.06 47.43 

Internal TO 29.50 33.81 24.93 23.12 31.72 5.28 28.60 176.96   

Internal NET 3.49 2.44 -3.95 -1.98 5.30 -4.52 -0.78    

External TO 18.89 13.93 10.85 10.39 25.35 10.86 19.54  109.81  

External NET 0.46 0.58 -0.90 -1.82 3.55 -3.35 1.48    

Overall TO 48.39 47.73 35.78 33.51 57.07 16.14 48.14   286.77 

Overall NET 3.94 3.01 -4.85 -3.80 8.85 -7.86 0.70 Internal TCI External TCI Overall TCI 

Inc.Own 103.94 103.01 95.15 96.20 108.85 92.14 100.70 25.28 15.69 40.97 

Notes: Results are based on a TVP-VAR-DY with a lag length of order 8 (AIC) and a 10-step-ahead forecast. 

The network is plotted in Figure 2, BIO, SOLAR and OIL act as net risk transmitters, while WIND, GEO and 

NGS function as net risk receivers. Notably, NGS receives net risk within the dirty energy connectedness network. 

OIL remains an important risk transmitter due to its strategic role in energy systems. Furthermore, the substitution 

of SOLAR and WIND as important clean energy sources has influenced natural gas, while renewable energy 

systems can serve as effective alternatives to natural gas (Ozdurak, 2021). 



 

Figure 2 Network of net spillovers 

As shown in Figure 3, the total connectedness index of clean and dirty energy markets fluctuated at around 

the 20%–70% range over the course of the entire sample period. The internal connectedness of clean energy markets 

is significantly greater than that of dirty energy markets, and exhibits higher volatility while being more sensitive 

to specific impact events, such as the COVID-19. The volatility of clean energy markets is attributed to their heavy 

reliance on technological advancements and government policies, which are susceptible to rapid alteration or 

disruption by external factors. In contrast, dirty energy markets, dependent on fossil fuels, exhibit greater stability 

due to established infrastructure and consistent consumption patterns; however, they are not impervious to external 

shocks. For instance, the COVID-19 pandemic precipitated a substantial decline in global oil demand as travel 

restrictions curtailed transportation needs. Nevertheless, this impact was relatively short-lived compared to the 

ongoing fluctuations observed in clean energy markets. 

 

Figure 3 Dynamic total connectedness. 

Figure 4 demonstrates the external net pairwise directional connectedness (NPDC). The interaction between 

clean and dirty energy indicates the dominance of NGS over BIO, SOLAR and GEO. OIL exhibits a dominant role 

in comparison to WIND. These interactions suggest that traditional fossil fuels, particularly NGS and OIL, continue 

to play a pivotal role in the energy market landscape. The dominance of NGS over clean energy sources underscores 

the ongoing reliance on natural gas as a transitional fuel in the global energy mix. 



 

Figure 4 External net pairwise total directional connectedness. 

3.2 The Impact of Climate Risks on the Connectedness 

Figure 5 and Figure 6 demonstrate the response coefficients between the climate physical and transition risks 

and the external connectedness, internal connectedness of clean energy market and dirty energy market respectively. 

The impact of CPR is significantly larger than that of CTR. As physical risks increase, connectedness in the energy 

market also rise. The impact of CPR on external connectedness is more pronounced than that on internal 

connectedness, given the considerable heterogeneity in the effects of climate physical risk on different types of clean 

and dirty energies. Specifically, the rise in physical risks indicates that energy infrastructure faces a higher 

probability of damage, which could lead to supply disruptions or increased costs, especially for fossil fuel 

infrastructure. It is noteworthy that when the physical risks increase significantly (at the upper quantiles of CPR), 

the interdependence between the clean and dirty energy markets may intensify. This interdependence can create a 

hedging mechanism to some extent. However, both clean and dirty energy markets still contend with their own 

specific risks. For instance, the awareness of physical risks by professional investors at normal quantiles may 

heighten the connectedness among the dirty energy markets. 



 

Figure 5 The impact of CPR on the connectedness under different markets conditions. 

Notes: The coefficients represent the estimation of the slope 𝛽1(𝜃, 𝜏) (Eq.21) which captures the impact of the 𝜏th quantile of CPR 

on the 𝜃th quantile of the connectedness and the colour represents the strengths of correlations. 

 

Figure 6 The impact of CTR on the connectedness under different markets conditions. 

Notes: The coefficients represent the estimation of the slope 𝛽1(𝜃, 𝜏) (Eq.21) which captures the impact of the 𝜏th quantile of CTR 

on the 𝜃th quantile of the connectedness and the colour represents the strengths of correlations. 

As climate transition risks intensify, energy markets are likely to experience increased volatility in 

connectedness. It can be seen that the internal connectedness of clean/dirty energy markets is not significantly 

influenced by the CTR due to the fact that investors' assessments and expectations may vary considerably across 

different forms of energy under highly uncertain climate policies. With regard to external connectedness, the clean 

and dirty energy markets are less integrated and more independent at lower/higher climate transition risk due to 

significant discrepancies in market expectations among investors. However, at typical transition risk levels, the 

trajectory of energy transition gives rise to an uptick in investment substitution between the two markets, which is 

indicative of a positive impact. 

4. Conclusions and Implications 

This paper investigates the relationship between clean and dirty energy markets and how it evolves with 

changes in climate risks. The results reveal that most risks originate from volatility within the clean/dirty energy 

markets. SOLAR and OIL are identified as significant spillover contributors, implying that policy-makers should 

prioritize solar and wind power and promote energy independence. The asymmetric responses to different climate 

risks vary with energy portfolios and market conditions. Climate physical risk has a larger impact on energy markets 

than transition risk, which is more influential on external connectedness between clean and dirty energy markets. 



As physical risks rise, investment risks in both clean and dirty energy markets increase. Intensified transition risks 

will further increase the uncertainty in the interdependence between clean and dirty energy markets. The study also 

indicates that while the tail risks associated with climate change are crucial, the broader spectrum of climate risks 

play a pivotal role in shaping the connectedness between clean and dirty energy markets. Our analysis attaches 

particular importance to market conditions and differences among different quantiles, contributing to the rare 

literature on cross-market connectedness study on clean and dirty energy markets. But this study has several 

limitations that could be addressed in future research. For example, we only focus on the global market, but there 

are geographical differences. 
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