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Abstract: In recent years, climate investment markets have experienced a significant 

expansion and a growing integration with the traditional energy markets due to 

increasing concern regarding climate change. This paper examines the risk spillover 

between climate investment and traditional energy markets in different time-frequency 

domains and then explores how do various global uncertainties affect the risk spillovers. 

The results indicate that total spillover between climate investment and traditional 

energy markets increases with the investment cycle lengthens. Furthermore, the impacts 

of various global uncertainties on the spillover exhibit dynamic changes at different 

time-frequency domains. Market uncertainties such as VIX and VOX have higher 

impacts in short-term while geopolitical uncertainty has a higher long-term impact. 

Climate-related uncertainties also demonstrate pronounced impacts in certain periods.  
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1. Introduction 

The global agreement and action for carbon neutrality mark the transition from the 

traditional development paradigm to a new green development paradigm in response to 

pressing environmental concerns. The reduction in greenhouse gas (GHG) emissions 

requires significant investment and financing, necessitating the use of climate finance 

(Nasreen et al., 2020). In terms of financing instruments, debt is the predominant 

climate investments on a global scale, closely followed by equity. Globally, the share 

of equity financing for clean energy declined from 77% in 2013 to 43% in 2020, while 

that of debt financing more than doubled from 23% in 2013 to 56% in 20202. This is 

attributable to the maturation and integration of prominent renewable energy 

technologies, such as solar photovoltaic and onshore wind, which have demonstrated 

the ability to attract substantial debt financing. 

The interplay between climate investment and traditional energy markets 

manifests as a complex and dynamic phenomenon. This interaction involves vying for 

finite resources, wielding influence in policy-making spheres, and serving as key 

architects in steering the trajectory toward a sustainable future. Stakeholder inclinations, 

as well as the contours of policy and regulatory frameworks, further contribute to 

shaping this intricate relationship. Moreover, the landscape of climate policy is 

progressively incorporating investment support instruments as strategic tools to address 

market failures intertwined with energy investments. This multifaceted integration 

underscores the evolving sophistication of initiatives aimed at fostering a harmonious 

coexistence between climate-conscious investments and the traditional energy sector. 

There is substantial evidence supporting the notion that the uncertainties, such as 

the financial market uncertainty, economic policy uncertainty, energy market 

uncertainty, and geopolitical uncertainty, considerably influence both climate 

investment and traditional energy markets (Long et al., 2022; Saeed et al., 2021). High 

uncertainty probably reflects investors’ risk avoidance, which may affect the 

availability of financing for renewable energy projects, while rising economic 

 
2IRENA and CPI (2023), Global landscape of renewable energy finance, 2023, International Renewable Energy Agency, Abu 
Dhabi. 
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uncertainty may cause companies to adopt a wait-and-see attitude toward long-term 

investment and expansion of operations. More importantly, some emerging 

uncertainties, such as climate-related uncertainty, also affect the risk relationship 

between climate investment and traditional energy markets. 

This paper develops an overall risk transmission network between climate 

investment and traditional energy markets under different time scales and further 

examines the impact of different uncertainties on the spillover. The main contribution 

of this paper is as follows. First, a time-frequency decomposition based on the 

maximum overlapping discrete wavelet transform (MODWT) is proposed to explore 

the risk spillover effect under different investment cycles. Second, the spillover among 

climate investment market and traditional energy market as two overall systems is 

analysed. Finally, two climate-related uncertainties are introduced, carbon downside 

uncertainty and investor attention to climate change. 

The remainder of this paper is organised as follows. The next section presents 

literature review. Section 3 introduces the research design, including the methodology 

and data. Sections 4 demonstrates the results of the empirical analysis, as well as the 

conclusion and policy implications are proposed in section 5. 

2. Literature review 

2.1.Nexus between climate investment and traditional energy commodities 

Extensive research has been conducted on the interconnection between climate 

investment and traditional energy markets; however, a definitive consensus is yet to be 

reached. Climate investment markets differ from traditional bonds or stocks in terms of 

various factors, such as trade limitations and issue scale (Cortellini & Panetta, 2021). 

Oil, gas and coal prices in the United States have played an active role in shaping the 

profitability of clean energy, but these energy prices make a limited contribution to 

extreme risks (Reboredo & Ugolini, 2018). Global coal futures exhibit the highest 

transmission capacity and are most susceptible to extreme shocks (Su et al., 2023). 

Policy frameworks and regulations play an indispensable role in the relationship 
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between clean energy and traditional energy markets, such as feed-in tariffs, tax credits, 

and subsidies (Chen et al., 2022). However, volatility spillovers among energy markets 

have been proven to be weak in the long run (Umar et al., 2022). 

Given the heterogeneity of economic agents and changing market conditions, the 

connectivity between climate investment and traditional energy markets may change 

with frequency. Energy markets are sticky in the short run and fully elastic in the long 

run, leading to different transmission frequencies than those in other markets (Ortas & 

Álvarez, 2016). The concerns of polluters and regulators lie primarily in low-frequency 

market connectivity, whereas financial participants are mainly interested in high-

frequency spillovers (Jiang et al., 2020). A multivariate wavelet method was introduced 

to investigate the correlation between the U.S. carbon emission trading market and 

several energy prices (Sousa et al., 2014). Urom et al. (2021) relied on wavelets and 

spillovers based on a time-varying parameter model with stochastic volatility to 

investigate the lead-lag relationships among global green markets across different time 

domains. However, limited studies have applied time-frequency methods to investigate 

the nexus between climate investment and traditional energy markets. Reboredo et al. 

(2020) examined the connectedness of green bonds with various asset classes across 

different investment horizons based on wavelet coherence. The study conducted by 

Nguyen et al. (2021) also investigated the interrelationships between green bonds and 

other asset markets utilizing the rolling window wavelet correlation approach. 

2.2.Impact of uncertainty on the spillover effect 

There is wide evidence that various categories of market uncertainty impact the 

spillover between climate investment and traditional energy markets. Yadav et al. (2023) 

found that macro uncertainty, including the VIX, influences volatility in energy markets, 

and this influence is transmitted through volatility persistence. Nikitopoulos et al. (2023) 

revealed that the connection between green bonds and VIX is time-varying and state-

dependent. While green bonds may be influenced by oil volatility to some extent, they 

have been found to be weakly connected to uncertainty indices, including the OVX 

(Pham & Nguyen, 2022). Previous study showed that the EPU spillovers from other 
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countries increase local bond market volatility, especially during financial crises (Gong 

et al., 2023). Additionally, all measures of geopolitical uncertainty transmit positive 

shocks to green investments, including green equity and green bonds (Sohag et al., 

2022). Geopolitical threats and acts also affect the returns on green bonds, with an 

increase in geopolitical threats and West Texas Intermediate (WTI) crude oil positively 

impacting the returns (Tang et al., 2023). Therefore, geopolitical risks play a significant 

role in shaping the spillover between green bonds and energy markets (Doğan et al., 

2023). EPU has both positive and negative effects on renewable energy innovation, 

depending on factors such as institutional quality and political orientation (Feng & 

Zheng, 2022). Geopolitical risks also affect the volatility and risk spillover of natural 

resource prices, including crude oil and natural gas, indicating a dynamic relationship 

between geopolitical risks and energy markets (Li et al., 2023).  

Climate-related uncertainties also have become a key factor affecting credit 

markets, energy markets, and other financial markets (Serletis & Xu, 2023). There 

appears to be a consensus in the previous literature on the fact that climate-related risks 

impact equity returns (Venturini, 2022). Many studies have used the Google search 

volume index (GSVI) based on keywords to assess investor attention to energy markets. 

Yao et al. (2017) found that investor attention contributed 15% to the long-run 

fluctuation of WTI oil prices. Prange (2021) analysed how investor attention affects the 

correlations among energy, stock, and commodity markets under different market 

conditions. Information about extreme climate change may cause investors to become 

pessimistic and eventually affect their trading behaviour. Pham and Cepni (2022) 

documented a substantial increase in the spillover between green bond returns and 

investor attention at the lower and upper tails of the distributions. Van Benthem et al. 

(2022) explored how concerns about climate risks influence the way investors allocate 

their capital and exercise their oversight of firms and how this investor response affects 

companies in the energy sector. The volatility of carbon price is also an ideal proxy 

variable for climate policy uncertainty as carbon price and climate change are closely 

linked (Van den Bremer & Van der Ploeg, 2021). Oyegunle et al. (2023) found that 

carbon pricing policies impact the credit risk of high-emitting sectors, such as the 
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energy sector, in resource-based economies such as Canada. Additionally, the financial 

impact of a rapid increase in carbon prices on corporate firms can be substantial, with 

the energy, materials and utilities sectors being the most affected.  

3. Methodology and Data 

3.1.Methodology 

The modelling process is divided into three steps. First, the return series of each 

market are decomposed and reconstructed into short, intermediate, and long terms using 

MODWT algorithm. Second, spillover networks at different time scales are constructed 

between climate investment and traditional energy markets. Third, the second layer of 

the spillover network is constructed to examine the impact of various uncertainties on 

the spillovers between climate investment and traditional energy markets under 

different investment cycles. 

3.1.1. MODWT algorithm 

Based on the classical discrete wavelet transform (DWT) algorithm, the MODWT 

algorithm proposed by Percival and Walden (2000) is a highly redundant, 

nonorthogonal wavelet transform with discrete wavelet smoothing that is not affected 

by the choice of the starting point of the time series and is more suitable for the 

multiscale analyses of financial asset time series.  

The DWT method can decompose the time series 𝑋𝑡, 𝑡 = 0,1,2, ⋯ 𝑁 − 1, 𝑁 into 

multiple subsequences based on the wavelet filter hl and scale filter gl. The wavelet 

coefficients and scale coefficients can be expressed as follows: 

𝑊𝑗,𝑡 = ∑ ℎ𝑗,𝑡𝑋(𝑡 − 𝑙)
𝐿−1

𝑙=0
            (1) 

𝑉𝑗,𝑡 = ∑ 𝑔𝑗,𝑡𝑋(𝑡 − 𝑙)
𝐿−1

𝑗=0
          (2) 

where 𝑗 = 1，2，. .，𝐽  represents the scale coefficient and 𝑙 = 0，1，2，. . 𝐿 −

1，𝐿 represents the length of the wavelet filter. 

The MODWT wavelet filter and the scale filter on the jth decomposition scale can 

be expressed as follows: 
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ℎ
~

𝑗,𝑙 =
ℎ𝑗,𝑙

2𝑗/2         (3) 

𝑔
~

𝑗,𝑙 =
𝑔𝑗,𝑙

2𝑗/2         (4) 

The wavelet coefficient and scale coefficient are expressed as follows: 

𝑊
~

𝑗,𝑙 =
1

2𝑗/2
∑ ℎ

~

𝑗,𝑡𝑋(𝑡 − 𝑙)
𝐿−1

𝑙=0
       (5) 

𝑉
~

𝑗, 𝑙 =
1

2𝑗/2
∑ 𝑔

~

𝑗,𝑡𝑋(𝑡 − 𝑙)
𝐿−1

𝑙=0
       (6) 

The original time series 𝑋𝑡 can be decomposed and reconstructed into multiple 

multiscale time series and a trend time series: 

𝑋𝑡 = ∑ 𝑤
~

𝑗
𝑇𝑤

~

𝑗 + 𝑣
~

𝑗
𝑇𝑦

~

𝑗

𝐽

𝑗=1
= ∑ 𝑑

~

𝑗 + 𝑆
~

𝑗

𝐽

𝑗=1
     (7) 

where 𝑑
~

𝑗  denotes the wavelet component of 𝑋𝑡  at scale 𝑗 , and 𝑆
~

𝑗  is the trend 

component of 𝑋𝑡. Considering that the analysis in this paper is based on daily data, we 

assume that 𝐽 = 8, which enables us to obtain short-term data from the high-frequency 

component 𝑑1: 21 = 2 𝑑𝑎𝑦𝑠, 𝑑2: 22 = 4 𝑑𝑎𝑦𝑠 . Similarly, intermediate frequency 

components 𝑑3: 23 = 8 𝑑𝑎𝑦𝑠, 𝑑4: 24 = 16 𝑑𝑎𝑦𝑠, 𝑑5: 25 = 32 𝑑𝑎𝑦𝑠  are obtained 

for intermediate-term data, while low-frequency components 𝑑6: 26 = 64 𝑑𝑎𝑦𝑠,

𝑑7: 27 = 128 𝑑𝑎𝑦𝑠, 𝑑8: 28 = 256 𝑑𝑎𝑦𝑠 are obtained for long-term data. 

3.1.2. Spillover network construction 

The spillover network can be used to track the dynamic spillover relationship of 

time series based on the generalized VAR model (Diebold and Yilmaz, 2012). 

Considering a moving average expression of a VAR model with 𝑁 variables: 

𝑦𝑡 = ∑ 𝐴𝑖𝜀𝑡−𝑖
∞
𝑖=0           (8) 

where 𝐴𝑖 = 𝜙1𝐴𝑖−1 + 𝜙2𝐴𝑖−2 + ⋯ + 𝜙𝑝𝐴𝑖−𝑝。 

In the VAR model framework, the generalized K-step forward prediction error 

𝛹𝑖𝑗(𝐾) is decomposed as follows: 

𝛹𝑖𝑗(𝐾) =
𝜎𝑗𝑗

−1 ∑ (𝑒𝑖
′𝐴𝑘∑𝑒𝑗)2

𝐾−1

𝑘=0

∑ (𝑒𝑖
′𝐴𝑘∑𝐴𝑘

′ 𝑒𝑖)
𝐾−1

𝑘=0

       (9) 

where 𝛴 is the variance matrix of the error vector 𝜀, 𝛹𝑖𝑖 is the standard error term of 

the 𝑖𝑡ℎ  equation of the table, and 𝑒𝑖  denotes the selection term; that is, the 𝑖𝑡ℎ 



8 

 

element equals to 1, and the other cases are zero. 

To adjust the sum of elements in each row of the variance decomposition table to 

1, the variance decomposition matrix is normalized to 

𝛹
~

𝑖𝑗(𝐾) =
𝛹𝑖𝑗(𝐾)

∑ 𝛹𝑖𝑗(𝐾)
𝑁

𝑗=1

         (10) 

Thus, the total connectedness index (TCI), the directional spillover of asset 𝑖 from 

asset 𝑗 (𝐷𝑆𝑖←𝑗), and the net directional spillover of asset 𝑖 and asset 𝑗 (𝑁S) are expressed 

as follows: 

𝑇𝐶𝐼𝑡(𝐾) =
∑ 𝛹

~

𝑖𝑗,𝑡(𝐾)
𝑁

𝑖,𝑗−1,𝑖≠𝑗

𝑁
× 100        (11) 

𝐷𝑆𝑖←𝑗,𝑡(𝐾) =
∑ 𝛹

~

𝑖𝑗,𝑡(𝐾)
𝑁

𝑖=1,𝑗≠𝑖

𝑁
× 100       (12) 

𝑁𝑆𝑖,𝑡(𝐾) = 𝐷𝑆𝑖→𝑗,𝑡(𝐾) − 𝐷𝑆𝑖→𝑗,𝑡(𝐾)       (13) 

To better understand the aggregate spillover index, we decompose it into a 

pairwise connectedness index (PCI), which measures the connectivity of markets 𝑖 

and 𝑗 (Gabauer, 2021): 

𝑃𝐶𝐼𝑖𝑗,𝑡(𝐾) = 200 × (
𝛹
~

𝑖𝑗,𝑡(𝐾)+𝛹
~

𝑗𝑖,𝑡(𝐾)

𝛹
~

𝑖𝑖,𝑡(𝐾)+𝛹
~

𝑖𝑗,𝑡(𝐾)+𝛹
~

𝑗𝑖,𝑡(𝐾)+𝛹
~

𝑗𝑗,𝑡(𝐾))
) , 0 ≤ 𝑃𝐶𝐼𝑡(𝐾) ≤ 100 (14) 

A 𝑉𝐴𝑅(𝑝) model is constructed using AIC information quasi-measures to obtain 

the most lagged order p. In addition, a rolling window technique of fixed length 𝜔 is 

used to obtain the dynamic spillover index. Thus, a sequence includes 𝑁 = 𝑇 − 𝜔 + 1 

windows with window period 𝑊𝑛 = {𝑊𝑖,𝑛} denoted as follows: 

𝑊𝑖,𝑛 = {𝑅𝑖,𝑛, 𝑅𝑖,𝑛+1, … , 𝑅𝑖,𝑛−1+𝜔}       (15) 

where 𝑖 denotes the time series 𝑛 = 1,2, . . . , 𝑁. In this paper, the window period is set 

to 200 days. 

3.2.Measurement of climate-related uncertainties 

3.2.1. Carbon downside uncertainty 

The generalized autoregression conditional heteroskedasticity–value at risk 

(GARCH–VaR) model is used to obtain the upside and downside VaRs to characterize 
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carbon market risk (Bollerslev, 1986). 

Mean equation：𝑟𝑡 = 𝑢𝑡 + 𝜀𝑡 = 𝛼1𝑟𝑡−1 + 𝜀𝑡; 𝜀𝑡 = ℎ𝑡
1/2

𝑧𝑡    (16) 

Variance equation：ℎ𝑡 = 𝛽0 + ∑ 𝛽1,𝑖𝜀𝑡−𝑖
2𝑞1

𝑖=1
+ ∑ 𝛽2,𝑗ℎ𝑡−𝑗

𝑝1

𝑗=1
   (17) 

To provide a given quantile for the distribution of the return of carbon markets, 

𝑉𝑎𝑅𝑡
𝛼 is defined as the 𝛼-quantile of the distribution of the log return, with α chosen 

as either 5% or 95% at the behest of the carbon price risks of going down and up: 

𝑃(𝑟𝑡 > 𝑉𝑎𝑅𝑡
𝛼) = 𝛼         (18) 

According to the definition 𝑟𝑡 = 𝑢𝑡 + ℎ𝑡
1/2

𝑧𝑡 and the assumption that 𝑧𝑡 follows 

skew generalized error distribution (SGED), the α-th quantile of rt can be calculated as 

𝑉𝑎𝑅𝑡
𝛼 = 𝑢𝑡 − ℎ𝑡

1/2
𝑧𝛼        (19) 

where 𝑧𝛼 denotes the α-th quantile of SGED. According to the above formula, once 

we have an estimation of the volatility and the expected return, the value of VaR can be 

obtained directly. 

The historical log returns of carbon assets with the dynamic 5% and 95% VaRs 

represent the carbon market risk downward index (𝐶𝐷 ) and the carbon market risk 

upward index (𝐶𝑈) respectively, as shown in Figure 1. The CD index is used to reflect 

the uncertainty from the carbon market, in that the downward and upward carbon risk 

indices are in direct opposition to each other. 

 

Figure 1 Carbon market risk upside and downside indices 

3.2.2. Attention to climate change 

Investors’ online search behaviour is widely used as a measure of investor 

attention. Search indices provided by search engines are popular and valid proxies. 
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Using the GSVI, we set the keywords of climate concern as “climate change” and 

“global warming” to measure investors’ attention to climate change (𝐴𝐶𝐶). In this paper, 

daily ACC data are constructed following Zhang et.al (2021), as shown in Figure 2. 

 

Figure 2 Attention to climate change index 

3.3.Data 

As shown in Table 1, at the market level, the S&P green bond index (GB) and the 

S&P global clean energy index (CLE) are considered as the proxy of climate investment 

markets (CIM). Traditional energy markets (TE) include the three main types of 

primary energy: crude oil (OIL), natural gas (NGS), and coal (COAL) markets. Daily 

data are collected from investing.com from March 1, 2013 to March 14, 2023. Through 

three DY spillover networks under different time domains, we can obtain the average 

PCIs between climate investment and traditional energy markets, including green bond 

and clean energy in the short term (CTS), intermediate term (CTI), and long term (CTL). 

Table 1 Description of variables 

Variables Indices Abbreviation 

Green bond S&P Green Bond Index GB 

Clean energy stock S&P Global Clean Energy Index CLE 

Crude oil Bloomberg WTI Crude Oil subindex OIL 

Natural gas Bloomberg Natural Gas Subindex NGS 

Coal Newcastle Coal Future COAL 

Uncertainties 

CBOE Volatility Index VIX 

CBOE Crude Oil ETF Volatility Index OVX 

US Economic Policy Uncertainty Index EPU 

Geopolitical Risk Index GPR 

Carbon Market Risk Downward Index CD 

Attention to Climate Change ACC 
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To accurately reflect the current global uncertainty, the following six uncertainty 

indices are selected: the CBOE volatility index (VIX), CBOE crude oil ETF volatility 

index (OVX), US economic policy uncertainty index (EPU), geopolitical risk index 

(GPR), carbon downside uncertainty (CD) and attention to climate change (ACC). The 

OVX measures unpredictability in the crude oil market, while the VIX shows volatility 

in the world stock market. It is common practice to quantify the daily uncertainty of 

global economic policy using the EPU (Baker et al., 2016). Geopolitical uncertainty is 

represented by the GPR (Baur & Smales, 2020; Liu et al., 2019). Except for the VIX 

and OVX, which are sourced from the CHOICE database, all other indices are collected 

on the website of policy uncertainty. 

Table 2 provides a descriptive statistic of the variables. The return of clean energy 

has the largest mean, followed by coal, while the natural gas market return is the 

smallest. The standard deviations show that the natural gas and oil markets have the 

most dramatic volatility. The skewness, kurtosis and JB statistic show that all return 

series are spiky and thick-tailed. Among the uncertainties, EPU fluctuates the most, 

followed by GPR, while the stability of CD is relatively high. All the series pass the 

ADF tests.  

Table 2 Descriptive Statistics 

 Mean Median Max Min SD Skewness Kurtosis JB Statistics ADF 

GB -0.0001  0.0000  0.0227  -0.0242  0.0036  -0.3456  8.2040  2899.528*** -31.5413 *** 

CLE 0.0003 0.0008  0.1103 -0.1250 0.0149 -0.4170 11.1765 7106.890*** -17.4038 *** 

OIL -0.0004  0.0010  0.2205  -0.3408  0.0269  -1.3919  27.2864  62870.35*** -53.4450 *** 

NGS -0.0009  -0.0006  0.1664  -0.1920  0.0305  -0.2401  6.7200  1480.202*** -53.6531 *** 

COAL 0.0002 0.0000 0.3406 -0.4325 0.0216 -3.1413 120.4017 1454257*** -47.1693*** 

VIX -0.0007 0.1200 17.640 -24.860 1.9821 -2.5701 34.374 88522.3*** -54.3719*** 

OVX -0.0040 -0.1300 130.22 -90.610 5.6559 4.9060 244.42 5129940*** -9.20782*** 

EPU -9.0133 -5.8800 358.28 -381.67 61.820 -0.4784 7.6902 2020.22*** -34.2059*** 

GPR 102.844 95.560 341.50 57.812 34.105 3.1804 18.631 25107.8*** -5.70105*** 

CD -0.0330 -0.0297 -0.0178 -0.139 0.0128 -2.7502 14.060 13452.62*** -7.62690*** 

ACC -0.0011 0.0800 21.750 -21.840 3.3911 -0.0716 5.51981 561.6170*** -12.8056*** 

Note: *, **, *** indicate significant at the 10%, 5%, and 1% significance levels, respectively. 
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4. Empirical results 

4.1.Decomposition and reconstruction of return series 

Figure 3 shows the wavelet decomposition and reconstruction results of the time 

series data. The fluctuation range of the traditional energy market is greater than that of 

the clean energy and green bond markets, and that of the crude oil market is the largest. 

With the increase in the time scale, the volatility degree of each market weakens, 

showing a stable trend in the long-term signal. In the short term, the returns of all 

markets experience sharp fluctuations in the periods of 2016, 2017 and 2020. The price 

volatility in 2016 and 2017 is attributable to increased uncertainty in the world economy, 

such as Brexit and the US Federal Reserve’s interest rate hike. 

 

 

 

Figure 3 Maximal overlap discrete wavelet transform results 
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Figure 4 Correlation between climate investment and traditional energy markets 

Figure 4 demonstrates the change in the correlation between climate investment 

and traditional energy markets at different time scales. The blank indicates that the 

correlation coefficient is not significant at a significance level of 10%. The correlation 

between green bonds and clean energy stock is significantly positive and increases with 

the time scale. The correlation between green bonds and oil markets is significantly 

positive in the intermediate and long terms. In the long term, there is a significant 

correlation among all markets, indicating that the MODWT method effectively captures 

the long-term information of the time series. 

4.2.Multi-timescale spillovers between climate investment and traditional energy 

markets 

4.2.1. Static spillover effects 

Based on the AIC, the lag order of the VAR model is set to 6, and the variance 

decomposition period 𝐻 = 10  is chosen at the short-, intermediate-, and long-term 

return levels. As shown in Table 3, the systematic total connectedness index (TCI) 

increases with the increase of time scale. The TCI values of short, intermediate and long 

terms are 20.60%, 24.55%, and 27.60%, respectively. Short-term investments are 

primarily influenced by stochastic factors such as market noise and unexpected events, 

resulting in a weak transmission effect. Conversely, long-term investments are 

predominantly driven by their fundamentals and logic, leading to a strong and stable 

risk transmission effect. 

Table 3 Static spillover indices 

Short term GB CLE OIL NGS COAL FROM 
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GB 80.10 6.79 4.97 3.67 4.47 19.9 

CLE 7.25 76.08 8.73 3.84 4.10 23.92 

OIL 4.15 9.17 77.88 4.31 4.49 22.12 

NGS 5.11 3.71 6.36 80.56 4.26 19.44 

COAL 4.61 3.45 4.77 4.78 82.40 17.6 

TO 21.11 23.11 24.84 16.59 17.32 102.98 

Inc.Own 101.21 99.20 102.72 97.15 99.72 TCI 

NET 1.21 -0.80 2.72 -2.85 -0.28 20.60 

Intermediate term       

GB 72.39 10.85 4.5 5.05 7.22 27.61 

CLE 7.40 73.52 8.85 4.96 5.26 26.48 

OIL 4.35 10.11 75.65 6.48 3.4 24.35 

NGS 4.54 5.63 6.26 77.26 6.31 22.74 

COAL 4.45 6.64 5.33 5.15 78.44 21.56 

TO 20.74 33.24 24.94 21.64 22.19 122.75 

Inc.Own 93.13 106.76 100.59 98.9 100.63 TCI 

NET -6.87 6.76 0.59 -1.1 0.63 24.55 

Long term       

GB 66.1 13.9 7.71 6.7 5.59 33.9 

CLE 7.38 72.64 11.47 3.88 4.63 27.36 

OIL 4.46 10.31 74.49 6.17 4.58 25.51 

NGS 7.26 7.6 3.98 74.97 6.19 25.03 

COAL 5.95 5.67 4.93 9.63 73.81 26.19 

TO 25.05 37.48 28.1 26.38 20.99 137.99 

Inc.Own 91.15 110.12 102.58 101.35 94.8 TCI 

NET -8.85 10.12 2.58 1.35 -5.2 27.60 

Note: 𝐹𝑟𝑜𝑚 represents the spillover effect of the market from other markets represented by the column 

vector, 𝑇𝑜 represents the spillover effect of the market to other markets represented by the row vector. 

𝐼𝑛𝑐. 𝑂𝑤𝑛 denotes the total spillover risk of that market including its own market, and 𝑁𝐸𝑇 represents 

the average net risk spillover of that market. 

For the climate investment markets, the green bond market exports risk to other 

markets in the short term, while receiving risk in the intermediate and long terms. The 

risk spillover effect between the green bond and natural gas gradually increases with 

the time scale. The clean energy stock market receives risk from other markets in the 

short term while exporting risk in the intermediate and long terms. The spillover 

between clean energy and crude oil is the largest. In the whole system, the net risk 

spillover effect of the crude oil market is the largest in the short term (2.72%), which is 

related to the high short-term volatility of the crude oil market itself. As the time scale 
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increases, the risk spillover of the crude oil gradually decreases. Overall, the natural gas 

market mainly receives net risk spillover from the system as a whole and only exports 

risk in the long term. 

The topology of the short-, intermediate-, and long-term spillover networks is 

shown in Figure 5. In the short term, the green bond market is a net transmitter of the 

whole system, exporting risks to the natural gas, clean energy stock, and coal markets. 

As the time scale increases, the green bond market gradually becomes a net receiver, 

mainly receiving risks from the crude oil and clean energy stock markets. The clean 

energy stock market is a net receiver in the short run, mainly receiving risks from the 

coal market. This situation arises due to the inherent risks associated with the coal 

industry, such as environmental degradation and regulatory pressures, which 

necessitate a higher risk premium for investors. As the time scale increases, the clean 

energy stock market gradually becomes a net exporter, spilling risk mainly to the green 

bond market. These risks are mainly funnelled toward the green bond market, reflecting 

the growing importance of climate investments and the increasing demand for green 

bonds. 

 

Figure 5 Short-, intermediate-, and long-term network 

Note: Each market is represented by a node, with the blue node indicating the net transmitter of risk and 

the yellow node indicating the net receiver. The larger the node, the greater the net risk of either the 

output or the receiver. The direction of the arrow indicates the direction of the spillover, and the line 

thickness indicates the strength of the spillover. The directional arrows connecting the two nodes show 

the direction and strength of the net spillover relationship between the two markets. 

The crude oil market remains an important risk spillover point for the whole 

system. It is well acknowledged that crude oil prices play a strategic role in energy 

system. Although it is still debated in academia whether oil prices are the main driver 
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of the financial performance of clean energy companies, the fossil fuel energy system 

is dependent on lucrative profits and multinational energy companies, and the clean 

energy transition can be a good alternative and redistribute such profits to producing 

consumers (Ozdurak, 2021). The natural gas market is gradually changing from a net 

receiver to a net exporter of risk, receiving oil and green bond market risks in the short 

term, receiving risk from the coal market in the intermediate term and receiving clean 

energy stock market risk and exporting risk to the crude oil and coal markets in the long 

term. The natural gas market receives systemic risk in the short and long terms, and has 

demonstrated good potential risk hedging and protection in the intermediate term. 

Natural gas is a low-carbon energy source that needs to compete with coal and clean 

energy sources. And the alternative role of solar and wind as important clean energy 

sources has influenced the development of the natural gas market. For natural gas, a 

striking result is the limited statistical relevance of economic policies and other markets, 

as this market is characterized by long-term contracts (Khalifa et al., 2015). As a result, 

the natural gas market is “marginalized” in the system. 

4.2.2. Dynamic spillover effects 

As shown in Figure 6, the total connectedness indices between climate investment 

and traditional energy markets fluctuate within a range of 10% – 50% throughout the 

sample period. The year 2016 witnessed the signing and formal entry into force of the 

Paris Agreement, which led to an increase in worldwide attention to climate investment, 

with total spillover effects reaching a small peak. During the COVID-19 pandemic, 

there was a significant surge in the total connectedness indices, reaching their peak in 

the short, intermediate, and long terms within the specified time frame. The volatility 

spillover exhibited sensitivity toward extreme events. Notably, long-term volatility 

spillover effects consistently surpassed those observed in the short term, aligning with 

our findings from the static analysis. 
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Figure 6 Short-, intermediate- and long-term total connectedness indices 

While taking the green bond market (GB) and clean energy stock market (CLE) 

as a whole, the dynamic spillover indices is also used to explore the temporal 

characteristics of directional spillovers of the climate investment (CIM) under different 

investment cycles, as shown in Figure 7. The dynamic risk spillover effect of climate 

investment has time-varying characteristics with different roles in different economic 

periods and time scales. In the past two years, with the increasing focus on sustainable 

investment, the short and intermediate term risk spillovers of climate investment on 

traditional energy markets have continued to strengthen. 
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Figure 7 Dynamic risk spillover effects of the climate investment markets 

Note: 𝐶𝐼𝑀_𝑓𝑟𝑜𝑚 represents the risk spillover of the climate investment markets (green bond and clean 

energy) receiving from other markets and 𝐶𝐼𝑀_𝑡𝑜 represents the risk spillover of the climate investment 

markets to other markets of the system. After offsetting the spillovers, 𝐶𝐼𝑀_𝑛𝑒𝑡  denotes a net 

directional spillover from the climate investment markets. 

Figure 8 demonstrates the dynamic pairwise connectedness index (PCI) among 

the climate investment and the crude oil market (𝐶𝐼𝑀 − 𝑂𝐼𝐿 ), natural gas market 

(𝐶𝐼𝑀 − 𝑁𝐺𝑆), and coal market (𝐶𝐼𝑀 − 𝐶𝑂𝐴𝐿). In 2016, with the issuance of the first 

green asset-backed bond and the subsequent rise in green bond investments, there was 
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a notable surge in the PCI of the climate investment at long term. Amidst the ongoing 

impact of COVID-19 pandemic on global economic growth around 2020, investors 

focusing on climate investment as a means to hedge their investments. Consequently, 

there has been an increase in the PCI of the climate investment markets at short and 

intermediate term. The risks associated with the COVID-19 pandemic do not distract 

investors from environmental issues (Garel & Petit-Romec, 2021). Instead, investors 

expect the epidemic to spur green investments and adjust carbon and clean energy 

investment strategies to this new market landscape (Ding et al., 2022). 

 

Figure 8 Pairwise connectedness indices (PCI) of the climate investment market 
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4.3.Impact of uncertainties 

From the dynamic analysis, we obtain the PCI between climate investment and 

traditional energy markets in the short term (CTS), intermediate term (CTI), and long 

term (CTL) under different time domains. Then, DY spillover method is used again to 

examine the impact of various global uncertainties. Based on the AIC, we select a 7th-

order VAR model in the short term and 8th-order VAR models in the intermediate and 

long terms. The variance decomposition period is 𝐻 = 10. The spillover matrices are 

shown in Table 4. The TCIs are 24.21%, 25.64%, and 23.00% in the short, intermediate, 

and long terms, respectively, which indicates that in the intermediate term, market 

uncertainty indicators have a greater impact on risk spillovers from climate investment 

to traditional energy markets. 

Table 4 Static spillover indices of uncertainty indicators 

Short term CTS CD ACC VIX OVX EPU GPR FROM 

CTS 75.77 5.48 3.51 5.04 4.69 2.64 2.86 24.23 

CD 5.87 72.19 2.49 4.44 5.33 4.6 5.08 27.81 

ACC 3.54 2.92 81.64 2.93 3.37 2.66 2.95 18.36 

VIX 4.45 3.04 2.53 71.54 12.55 3.36 2.54 28.46 

OVX 3.57 3.49 3.32 12.2 70.51 3.73 3.18 29.49 

EPU 4.56 3.68 3.38 4.96 4.8 74.79 3.83 25.21 

GPR 2.32 2.64 1.82 2.8 2.45 3.92 84.06 15.94 

TO 24.31 21.26 17.05 32.37 33.19 20.89 20.44 169.5 

Inc.Own 100.08 93.45 98.69 103.9 103.7 95.68 104.5 TCI 

NET 0.08 -6.55 -1.31 3.9 3.7 -4.32 4.5 24.21 

Intermediate term        

CTI 76.86 4.49 4.06 3.35 4.19 3.87 3.17 23.14 

CD 4.09 71.52 2.86 5.43 6.37 5.52 4.2 28.48 

ACC 4.32 2.93 79.47 2.95 3.8 3.09 3.43 20.53 

VIX 3.60 3.57 2.70 71.14 12.24 3.81 2.96 28.86 

OVX 4.77 4.41 3.64 11.76 68.01 3.93 3.48 31.99 

EPU 4.63 5.17 4.2 5.51 4.91 71.5 4.09 28.50 

GPR 3.51 2.42 2.54 3.15 2.51 3.87 82 18 

TO 24.92 22.99 19.99 32.16 34.01 24.1 21.33 179.51 

Inc.Own 101.78 94.51 99.47 103.3 102.02 95.6 103.33 TCI 

NET 1.78 -5.49 -0.53 3.3 2.02 -4.4 3.33 25.64 

Long term         
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CTL 81.64 3.36 2.69 2.84 3.32 2.21 3.94 18.36 

CD 3.81 72.71 2.25 5.5 5.38 4.9 5.45 27.29 

ACC 2.74 2.89 82.28 2.9 3.42 3.03 2.74 17.72 

VIX 2.88 3.42 2.49 72.51 12.77 3.34 2.61 27.49 

OVX 3.25 3.58 3.25 12.17 70.92 3.65 3.19 29.08 

EPU 3.21 4.21 3.38 4.87 4.62 76.07 3.64 23.93 

GPR 3.45 2.61 2.2 2.48 2.54 3.84 82.88 17.12 

TO 19.33 20.07 16.25 30.76 32.05 20.97 21.56 160.99 

Inc.Own 100.97 92.78 98.53 103.27 102.97 97.04 104.44 TCI 

NET 0.97 -7.22 -1.47 3.27 2.97 -2.96 4.44 23.00 

 

Figure 9 The impact of various global uncertainties on the PCI 

Figure 9 illustrates the impact of various global uncertainties on the PCI between 

climate investment and traditional energy markets across short, intermediate and long-

term horizons, showing each of these uncertainties affects the risk spillovers to varying 

degrees across the time-frequency domains. In the short term, CD exerts the most 

substantial influence on the spillovers, with an impact of 5.48%. The highest short-term 

impact indicates that fluctuations in the carbon market immediately trigger risk 

contagion between the climate investment and traditional energy markets, making the 

relationship highly sensitive to short-term shocks in carbon pricing. Following CD, the 

VIX (5.04%) and OVX (4.69%) also have significant short-term impacts on the 

connectedness between climate investment and traditional energy markets. It highlights 

the quick response of markets to these uncertainties. 

As for the intermediate term, ACC and EPU become more influential, with impacts 

of 4.06% and 4.19%, respectively. In contrast to the immediate transmission effects 
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observed with CD, VIX, and OVX, the impact of ACC and EPU necessitates a longer 

period to materialize, as these uncertainties are indicative of broader, more systemic 

concerns. Investor sensitivity to climate news reaches its peak in the intermediate term, 

possibly due to the time required for climate-related information to fully impact 

investment decisions. Similarly, EPU derived from news coverage of economic policy 

uncertainty, indicates that investor sentiment in the intermediate term is particularly 

responsive to uncertainties related to economic policy changes. The heightened 

influence during this period suggests that investors adjust their portfolios based on 

evolving expectations about future market conditions, especially with regard to climate 

and economic policy adjustments. 

In the long term, GPR emerges as the most significant factor, with an impact of 

3.94%. The enduring nature of geopolitical risk enables it to exert a sustained influence 

on market dynamics, overshadowing other uncertainties over time. For example, the 

recent energy crisis and geopolitical uncertainty have generated ripple effects on 

international affairs (Jin et al., 2023). These effects are also more pronounced at a low 

frequency, indicating that conflicts can impose a profound effect on energy markets. 

The predominance of GPR in the long term suggests that political risks become deeply 

ingrained in market expectations, affecting the connectedness between the climate 

investment and traditional energy markets over the extended periods. This stands in 

contrast to the diminishing impact of market volatility indices such as CD, VIX, and 

OVX, whose effects diminish as the time horizon lengthens. 

For the dynamic analysis, the risk spillover from CD, VIX, OVX, EPU to the PCI 

between climate investment and traditional energy markets in the short, intermediate 

and long terms is shown in Figure 10. Generally, all uncertainties exert a more 

pronounced impact on the connectedness in the short compared to the intermediate and 

long term. In the short term, the spillovers from VIX and OVX had exhibited a 

substantial increase and attained their extreme levels during the COVID-19 pandemic. 

EPU and GPR had a stable impact on the connectedness between the climate investment 

and traditional energy markets after Russia-Ukraine conflict. The impact of ACC had 

shown a significant increase since the signing of the Glasgow Climate Pact at the 



23 

 

COP26 in November 2021. The contracting parties of the pact committed to gradually 

reducing the use of coal and decreasing subsidies for fossil fuels. 

 

Figure 10  The dynamic impact of various global uncertainties on the PCI 

In the intermediate term, each uncertainty had a relatively equal influence on the 

connectedness between climate investment and traditional energy markets throughout 

the period, with the impact of ACC and EPU lager than the short and long terms. Further, 

the impact of ACC was more associated with the external climate events and global 

agreements, such as the Paris Agreement. The global emphasis on reducing carbon 

emissions and transitioning towards renewable energy sources had resulted in increased 
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investment in clean energy technologies and infrastructure. This shift in investment 

patterns had also influenced the behaviour of energy markets, with a growing focus on 

sustainable practices and environmentally friendly solutions, which bolstered the 

connectedness between climate investment and traditional energy markets.  

Over the long term, the connectedness between climate investment and traditional 

energy markets has been influenced by the sustained increase in GPR. For example, 

from the latter half of 2018 to 2019, the surge in unilateralism presented a significant 

and lasting challenge to the global governance system, resulting in a notable rise in 

GPR. This period witnessed a corresponding up-tick in the impact of GPR on the 

connectedness between climate investment and traditional energy markets. Further, a 

brief and sharp movement in VIX in early February 2018 led to the impact of VIX on 

the connectedness between climate investment and traditional energy markets increased 

sharply in the long term. In contrast to short and intermediate terms, long-term 

spillovers are shaped by more persistent and structural changes in uncertainties that 

have a lasting impact. 

5. Conclusion 

This study provides new insights into the dynamic linkage between climate 

investment and traditional energy markets. The impact of various types of uncertainties 

on risk contagion at different time scales are explored. Two dimensions of climate-

related uncertainties, CD and ACC are constructed, considering escalating concerns 

over climate challenges. A novel time-frequency domain approach is proposed to 

explore the spillover among climate investment and traditional energy markets under 

different investment cycles. The results show that the green bond market acts as a net 

transmitter of systemic risks in the short term while clean energy stock market exports 

risks in the intermediate and long terms. Further, the impact of various global 

uncertainties on spillover between climate investment and traditional energy markets 

varies significantly across different time-frequency domains. VIX and OVX show 

substantial short-term effects, indicating short-term fluctuations in equity and energy 

markets are highly effective in triggering immediate risk contagion across climate 
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investment and traditional energy markets. However, their influence diminishes over 

time as markets adjust and stabilize. In the intermediate term, uncertainties such as ACC 

and EPU become more dominant. The heightened influence of ACC highlights the 

critical role of climate-related news and global climate agreements in shaping 

investment decisions. Over the long term, GPR takes precedence as the most significant 

factor influencing the spillover between climate investment and traditional energy 

markets, indicating that long-term spillovers are more susceptible to persistent 

geopolitical risks than to transient market volatilities or policy changes. 

Our results provide guidance for policy development on differentiated regulatory 

regimes and risk-prevention measures at different time scales, highlight that the 

intensity of risk spillovers between climate investment and traditional energy markets 

are highly contingent on the type of uncertainties and the time horizon considered. 

Policymakers should focus on addressing the impacts of market conditions on 

traditional energy and climate investment markets under different investment cycles. 

While market uncertainties exert a more immediate and transient impact, the challenge 

of climate change and geopolitical risks have a more enduring and profound influence 

over a longer term. With growing environmental and climate concerns, the decisions 

and policy design of climate investment markets should not be independent of relevant 

information from climate change. Sudden short-term changes in climate-related 

uncertainty may affect the confidence of market participants.  
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